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Abstract
This paper describes the results of research on the
application of a dynamically downscaled seasonal
climate prediction system at Queensland
Department of Natural Resources and Mines
(NR&M). The NR&M seasonal climate prediction
system consists of a Global Climate Model (GCM)
and double nested Regional Climate Model (RCM)
that produces regional predictions at high
resolution for Queensland. A study has been
completed using this system forced with observed
sea surface temperatures for period 1965-2000.
The skill of the modelling system was evaluated
in terms of spatial and temporal variability and
the capacity to simulate extremes (defined as the
15th and 85th rainfall percentiles).

Major findings were that: (a) use of RCMs increased
the accuracy of simulated rainfall; and (b)
simulated ensemble average rainfall was more
highly correlated with SOI than observed rainfall;
and (c) when the output was linked to the Aussie
Grass modelling system a comparison with the
current SOI operational systems revealed similar
or better performance than the benchmark
statistical forecasting system when evaluated in
terms of production and resource condition.

The NR&M seasonal climate prediction system has
been run operationally using predicted sea surface
temperatures since September 1998 at monthly
intervals. Ensemble predictions with lead-times of
7 months allow a probabilistic approach to risk
management. The model output forms part of the
IRI Net Assessment Forecast utilised world-wide
and successfully provided an early warning of
increased chance of drought in eastern Australia
in 2002.

1. Introduction
Numerical climate models, both global and
regional, provide an alternative dynamically based
approach to forecasting rainfall and other climate
variables in contrast to statistical systems derived
from analyses of historical data. For many years
numerical weather prediction models have been

used routinely to make short-term weather
predictions with a high degree of skill, and in recent
years, it has also been demonstrated that these
models have some predictive ability at seasonal
time scales (Kumar et al,.1996; Zwiers 1996;
Barnston et al., 1999; Mason et al., 1999; Barnston
et al., 2000; Goddard et al., 2001; Palmer et al.,
2003). The American Meteorological Society
recently released a policy statement on Seasonal
to Interannual Climate Prediction (AMS 2001)
which stated:

The skill of seasonal climate prediction has
improved substantially over the past two decades,
largely in response to increased understanding
of the El Niño/Southern Oscillation (ENSO)
phenomenon. Routine, scientifically based,
skilful, seasonal forecasts are now possible for
some parts of the world, for some seasons. These
seasonal climate predictions are able to project
the mean conditions and some of the statistical
characteristics of the climate a season or two in
advance. The seasonal predictions are primarily
of use to organizations that have a decision-
making process that can intelligently use
probabilistic input and that are engaged in
activities that are sensitive to seasonal climate
variations and involve significant economic
stakes.

Trial operational seasonal climate forecasts have
been produced since 1997 at the International
Research Institution (IRI), Columbia University, and
since late 1998 at NR&M using a suite of Climate
Models (Mason et al., 1999; Syktus et al., 2001).

The successful application of seasonal climate
forecasts requires that meaningful information is
available at both the regional and local scale.
However, most of GCMs used in current seasonal
climate forecasting systems lack the spatial
resolution to derive realistic values of climate
variables at the resolution required by many users.
This shortcoming is particularly apparent when
dealing with precipitation, where sub-grid features
such as synoptic weather systems, thunderstorms
and tropical cyclones can cause large variations
in rainfall intensity and amount. Efforts to increase
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the horizontal resolution of GCMs, in order to
capture these processes, is currently limited by the
availability of computing resources.

In recent years the use of RCMs nested within
coarser resolution Global Climate Models has
become an increasingly affordable way to produce
dynamically downscaled seasonal climate
information at resolution relevant to regional and
local applications. RCMs are: 1) able to account
for important local factors such as orographic
forcing; 2) are physically based; and 3) are able to
produce a consistent response to a range of
physical forcings. The main limitations of the
nesting approach are that the higher resolution
information is only available for the region over
which the nesting is applied and there is no
physical feedback from the RCM to the GCM.

In Australia RCMs are used in climate change and
weather application research at CSIRO (Walsh et
al., 2002), and are the main tool used for high
resolution weather forecasts produced by the
Commonwealth Bureau of Meteorology (Puri et
al., 1998). In fact those models have been used
successfully for over two decades in weather
forecasting, producing high-resolution regional
weather information (Leung et al., 2003). NR&M
employs a two-tiered approach to seasonal climate
prediction (Goddard et al., 2001), in which the
boundary conditions such as sea surface
temperatures (SSTs) are predicted first and used to
force the overlaying atmosphere. The prescribed
SST boundary conditions can be obtained from
observed historical SSTs or predicted from a fully
coupled ocean-atmosphere climate model.

Ensembles of model integrations using both the
GCM and RCM were generated by perturbation of
the initial atmospheric conditions at the start of
integrations allowing probabilistic forecasts to be
developed.

NR&M is in the unique position in its ability to
link both statistical and dynamical climate forecast
systems with applications model such as the
AussieGRASS spatial grazing simulation system
and hydrologic models. This is often referred to as
an ‘end-to-end’ approach (Goddard et al., 2001;
Leung et al., 2003) with chain of information
processing and activities starting with the
observation of climate state, through to prediction
using climate models, to production of forecast
information, application of information and ending
with decision making and outcomes (see Figure 1).

In this paper, we: 1) review the results from GCM/
RCM hindcast simulations; 2) briefly describe
operational activity since 1998; and 3) present
preliminary findings from linking GCM output to
simulations of grazing systems in Queensland.

2. Evaluation of climate models
output for Queensland
This section evaluates the ability of a GCM and a
doubly nested GCM/RCM (280 km, 75 km, 15 km
resolution) system forced by observed monthly sea
surface temperatures (SSTs) to simulate long-term
rainfall patterns (mean and variability) of Australia
for the period 1965-2000. The NR&M seasonal
climate prediction system consists of a Global
Climate Model and double nested Regional Climate
Model, which produces regional predictions at high

Figure 1.  Schematic representation of concept of the ‘end-to-end’ approach to seasonal
climate prediction used at NR&M.
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resolution for Queensland. The development of an
ensemble modelling system for Seasonal to Inter-
annual Prediction at NR&M has the following
objectives:

Build an ensemble modelling system based on
a dynamical downscaling approach to predict
the seasonal climate conditions over
Queensland with extended lead-time.
Generate an extensive set of hindcast ensemble
integrations and produce bias a corrected model
ensemble dataset.
Evaluate the skill and potential utility of the
hindcast models ensembles using standard
evaluation techniques and through linkage with
a spatial simulation model of the grazing
system.
Study the sensitivity of the predictive system
to the ocean and land processes and implement
further improvements.
Produce real time seasonal climate predictions
using predicted SST, contribute forecast data
to the IRI pool of models for use in the
production of the IRI Net Assessment Forecast,
and to evaluate the skill of the forecast in
Queensland.

The following evaluation is based on a detailed
report (Syktus and McKeon, 2002) presented as
part of the Final Technical Report (McKeon and
Hall, 2002), to the Climate Variability in
Agriculture Program. In Chapter 6 of the Final
Report, over 30 colour plates were presented
evaluating GCM output. The following web
address: http://www.longpaddock.qld.gov.au/
AboutUs /Pub l i ca t ions /ByType/Repor t s /
GlobalAndRegionalClimateModels can be reviewed
for a more detailed examination of GCM results.
We present only a summary of the findings.

2.1 Experimental design

Two global climate models and a double nested
regional climate model were used in this
evaluation. The models used and their applied
resolutions are shown in Table 1 and are described
in more details in Syktus and McKeon (2002). The
NCEP Atmospheric GCM was used as a host for

nesting of the CSIRO DARLAM Regional Climate
Model. The first nesting (75 km) of the RCM was
applied across the Australian region and the second
(15 km) across the Queensland region only.

In addition a new version of the CSIRO T63 GCM
(Gordon et al., 2002) forced with historical SSTs
and sea ice was used to simulate historical
Australian climate since 1871 as part of ‘The
Climate of the 20th Century’ project. This model
was run with a horizontal resolution of 190 km.
An ensemble of seven integrations was evaluated
for period 1871-2001, and five integrations for
1949-2001 periods.

The CSIRO GCM has improved representation of
cloud processes and land parameterisation and
belongs to a new generation of climate models.
The NCEP model used in this study represents state-
of-the-art climate modelling from over a decade ago.

Observed sea surface temperatures from 1965 to
2000, which allowed the atmospheric component
of the models to be evaluated, forced all GCM
simulations. However, it does not allow the impact
of other climate forcings such as volcanic and other
aerosols, greenhouse gas concentration changes,
ozone, land use change, and solar variability to
be tested. Implicit in statistical forecast systems is
that the effects of climate forcings have been
integrated in the SST and atmosphere’s response.
Hence, it is important to realise that the use of
just SST forcing by itself in GCM/RCM simulations
could limit the likely explanation of observed
rainfall because temporal variation in other
forcings are not represented.

The comparison of model simulated and observed
long-term seasonal rainfall characteristics is an
essential first step in the evaluation of GCM/RCM
systems before using it to produce rainfall forecast.
Regional rainfall characteristics were evaluated for
each model using measures such as mean, bias,
variance and spatial correlation for the seasonal
long-term climatology for period 1965 to 2000.
In addition the evaluation has been completed for
skill of simulating inter-annual rainfall variability
using anomaly correlation, root square mean error
and Relative Operating Characteristics (ROCs).

  
 

    
   
   

   
 

Table 1.  GCMs and RCMs used in simulation experiments.
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The ensemble members of each model output for
these simulations (Table 1) were averaged and the
mean of each was used in subsequent analyses.
Ensemble averaging is used to reduce atmospheric
noise and enhance a coherent response to a
forcing; however, as a result the amplitude of the
ensemble mean anomaly tends to be less that the
observed amplitude. It is important to recognize
this difference in amplitude when the ensemble
mean is compared with observations. The period
of 1965 to 2000 includes several El Niño and La
Niña events, and both positive and negative phases
of the IPO index (Power et al., 1999). In Queensland
the period includes extreme droughts (1965, 1969,
1982, 1991 to 1994), extreme summer wet seasons
(1973/74, 1990/91), and two degradation episodes
(1960s in south-west Queensland and 1980s in
north- eastern Queensland (McKeon et al., 2003).

2.2 Large-scale circulation features

The El Niño Southern Oscillation (ENSO)
phenomenon is a planetary scale oscillation
involving large-scale interactions between the
oceans and the atmosphere in the tropical-
subtropical Pacific Ocean region. The most direct
manifestation of ENSO is the oscillating pressure
differences between the Indonesian-Australian
region and the southeast Pacific. The traditional
measure of this oscillation is the Southern
Oscillation Index (SOI), which is the normalised
Tahiti-minus-Darwin pressure difference. The
importance of ENSO in the global climate system
is illustrated by the fact that it explains the largest
amount of climate variability after the seasonal
cycle and the monsoon system (Allan 2000). The
SOI is also commonly used to forecast rainfall in
eastern Australia (McBride and Nicholls 1983,
Stone et al. 1996). Thus, the ability of GCMs to
simulate the pressure differences as measured by
the SOI is an important component in assessing
their ability to accurately simulate seasonal
rainfall. SOI values derived from both the NCEP
and CSIRO GCMs were found to be in close
agreement with observed SOI values (Figure 2),
indicating that the simulated atmosphere in terms
of mean sea level pressure responded to SSTs in a
similar way to that which actually occurred.
Correlations for predicted and observed SOI values
were high at a monthly timescale (r2=0.58), and
very high for the 5-month running mean (r2=0.8)
for the period 1965-2000. The simulation of SOI
values also provides a simple way of converting
GCM output into rainfall forecasts using the same
approaches as the statistical systems (Stone et al.,
2000).

2.3 Tropical cyclones

Tropical cyclones can be a major source of rainfall
in Queensland, especially in La Niña years. The
application of RCM at higher spatial resolution
provided an opportunity to evaluate the occurrence
of tropical cyclones. During La Niña years tropical
cyclones have tended to track towards
Queensland’s coast and then deteriorated into rain
depressions. In contrast, cyclones paths in El Niño
years have been generally south or east (Walsh
and Syktus, 2003). Analysis of data from the 75
km RCM for tracks of the ‘tropical cyclone-like
vortices’ (TCLVs, see Walsh and Syktus 2003) show
that TCLVs in the model followed paths that were
similar to those observed. The simulated paths of
TCLVs for 1973/74 (strong La Niña) and 1982/83
(strong El Niño) showed the expected contrasting
pattern of movement. Similar fine resolution
features occur in other regions (e.g. northern
America) indicating that the models, especially
RCMs, are capable of representing important
rainfall-producing meteorological phenomena.

2.4 Spatial distribution of simulated rainfall
climatology

The ability of GCMs and RCMs to simulate the
spatial pattern of long-term average seasonal
rainfall is a critical component of any evaluation
process. GCMs, commonly configured with
effective grid spacing of 200-300 km, have
demonstrated skill in simulating spatial rainfall
patterns at global or even continental scales, but
are unable to simulate local fine scale patterns
which are required by hydrological and agricultural
modelling applications.

The spatial patterns of seasonal rainfall were
simulated with three models operating at spatial

 
Figure 2.  Comparison of simulated and observed
monthly SOI values from 1965 to 2000.  Observed
values were calculated from the difference in anomaly
of mean sea level pressure between Tahiti and Darwin.
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scales of 280, 75 and 15 km. The increase in
effective spatial resolution is some 350 times
between the host GCM and the double nested RCM.
This increase in resolution is demonstrated (Figure
3) in the example of seasonal (January - March)
precipitation in Queensland simulated by
dynamical downscaling system consisting of the
NCEP GCM and double nested RCM. Increasing
topographical resolution produced more detailed
meteorological features such as ‘rain-shadows’
resulting from coastal ranges near Gladstone and
Mackay (Figure 3).

In this evaluation the NCEP GCM was able to
simulate the relative east/west pattern in mean
long-term average seasonal rainfall distribution
across Australia, although it was generally too wet,
especially during the summer season in
Queensland. However, this model was unable to
resolve the sharp gradient and orographic effects
along the eastern part of Australia. Nesting of the
RCM at 75 km resolution within the NCEP GCM
considerably improved the spatial pattern of
rainfall with many of the sharp gradients in rainfall
well represented (e.g. SW WA, top end of NT,
northern coastal Queensland, and the difference
between east and west Tasmania), but still did not
resolve adequately the orographic effect of the
Great Dividing Range along the eastern coast of
Australia. At 15 km resolution the spatial pattern
of the simulated rainfall was more realistic with
‘rain shadow’ effects evident as a result of the
coastal ranges near Gladstone and Mackay.

Comparison of the models’ simulated rainfall with
grided surfaces of rainfall observations in terms
of mean, standard deviation and spatial correlation
(Table 2) for different regions of Australia, and
for various seasons indicated the RCM simulations
give a great improvement over the host NCEP GCM
in all states of Australia. The CSIRO T63 GCM

performed better than the NCEP T40 with the dry
inland in central Australia and the wet coastal strip
of north-eastern Australia being well represented.
Given the better performance of the CSIRO T63
relative to the NCEP GCM, the future nesting of
RCM within the CSIRO T63 could be expected to
also produce better RCM results.

Of particular note was the ability of the 15 km
RCM to correctly represent the contrasting isohyet
patterns of summer (DJF) and winter (JJA), namely:
summer isohyets were parallel to the coast whilst
winter (JJA) isohyets ran north/south. Formal
calculation for this model of differences between
observed and simulated rainfall indicated that most
of the seasons had large areas with less than +/-
1mm/day difference. An exception was spring
(SON) in which the differences for a substantial
part of inland Queensland were 1-2mm/day, and
the coastal strip 2-10mm/day.

2.5 Correlation of observed and simulated
rainfall over time

Correlations were calculated between observed
rainfall and the ensemble mean for each of the
four models for the 1965 to 2000 period. The
observed rainfall was interpolated to the
appropriate model resolution before the temporal
anomaly correlation was calculated for each grid
cell. For annual rainfall, areas of reasonable
correlation (r >0.4, n = 36) were found in central
Queensland and WA. For Queensland, the 15 km
RCM showed large coastal and inland regions with
significant (P = 0.05) correlations (r > 0.2). The
important Queensland pastoral-cropping zone had
substantial areas with reasonable correlations (r
>0.4). All four models were similar in terms of
areas with significant correlation, with the 15 km
RCM performing best.

Figure 3.  Example of seasonal (January - March) precipitation in Queensland simulated by dynamical
downscaling system consisting of the NCEP GCM and double nested CSIRO RCM.
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2.6 SOI correlations with Queensland
rainfall

Spatial patterns of Queensland SOI-rainfall
correlations were evaluated for all four seasons
using ensemble averaged output from the GCMs,
75 km RCM and 15 km RCM. In all cases the SOI-
rainfall correlation were stronger for the simulated
data than were observed, with very high
correlations for summer. Even in autumn (MAM),
the various models showed strong positive
correlations whilst the observed data showed areas
of negative correlation and few areas of positive

correlation. However, when correlations for
observed SOI and observed rainfall were compared
to correlations for simulated SOI and simulated
rainfall for individual ensemble members, then the
NCEP T40 GCM for most members had regions of
stronger correlation than observed, but with more
variation from member to member. SOI/rainfall
correlations for average of ensembles from CSIRO
T63 GCM were not as strong as NCEP T40 GCM
but nevertheless there were regions in eastern
Australia with stronger than observed correlations.
Individual ensemble correlations were more varied
than NCEP T40 GCM ensembles with some

   
 

 
 

 
 

     
    

    
 

    
     

    
     

    
     

    
     

    
     

    
     

     
     

    
     

    
     

    
    

    

 

    
     

    
    

     

    

Table 2.  Mean, standard deviation (SD) and spatial correlation for models compared with long-term (1965-2000)
observed rainfall for DJF. The regions for area-averaged rainfall are: 1) Australia including Tasmania; 2) southern
Australia, south of latitude 30; 3) northern Australia, north of latitude 30; 4) eastern Australia, east of longitude
140; 5) NSW and Victoria; 6) Queensland; and 7) the Queensland pastoral and cropping zone.  The spatial pattern
correlation was calculated for the observed and simulated average (1965-2000) DJF rainfall at the resolution of the
particular model. Thus the correlation values represent the explanation of spatial variation not temporal variation.
Mean and SD of the observed rainfall was derived from data at 75 km resolution.  Model data are the average of an
ensemble of model runs.
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ensemble members having regions with
correlations of opposite sign to that observed.

Across Queensland’s grazing lands, area-averaged
observed SOI/rainfall correlation (for 1965 to 1999)
was 0.35, with the GCMs indicating correlations
of 0.86 (NCEP T40) and 0.46 (CSIRO T63). For
individual ensemble members SOI/rainfall
correlations ranged from 0.54 to 0.73 for NCEP
T40 GCM, and 0.10 to 0.49 for CSIRO T63 GCM.
For eastern Australia the area-averaged SOI/
rainfall correlation from CSIRO T63 GCM was 0.33
(close to observed value 0.31). Thus the CSIRO T63
GCM had a more realistic representation of the
teleconnection between SOI and continental
rainfall. The fact that there was large variation
between individual ensemble members in regional
SOI/rainfall correlations shows the chaotic nature
of the climate system as represented by individual
realisation of ensemble members, and suggests that
there is an inherent limit in forecasting rainfall
using SOI. In reality the observed time-series of
rainfall may be equivalent to a single ensemble
member and GCM studies such as this may indicate
an important upper limit to predictability.

2.7 Area-aggregated anomaly correlation of
observed and simulated rainfall

The anomaly correlations between simulated and
observed rainfall (1965-2000) for each season-
model combination are shown for area-averaged
rainfall in Table 3. For Australia, correlations were
low for summer (DJF) and winter (JJA) and
moderate other seasons (Table 3). At this
continental scale, the CSIRO T63 GCM performed
better than both the NCEP GCM and the 75 km
RCM at annual time periods and for spring (SON),
the season with highest correlations. Correlations
were higher when Queensland was considered as
a whole (r = 0.27 to 0.34 for annual rainfall) and
higher still for the smaller Queensland pastoral-
cropping zone (r = 0.3 to 0.42 for annual rainfall).
The strong correlation for the Queensland pastoral-
cropping zone is to be expected as this area, which
excludes Cape York, the Gulf of Carpentaria and
far-western Queensland, includes some of the
strongest ENSO-rainfall relationships (McBride and
Nicholls, 1983). Although the NCEP GCM was ‘too
wet’ in terms of average annual rainfall (Table 2),
it does have the some useful skill for the
Queensland pastoral-cropping zone in most
seasons. The NCEP AGCM has been selected for

        

      
      
             
      

      
       

      
      

      
      

      
      
      

 

      
 

      
 

  
 

         
         

         
         

 

Table 3.  Correlations (r) between area-averaged observed and simulated (GCM and RCM) annual and seasonal
(MAM, JJA, SON, DJF) rainfall for the period 1965-2000 at three geographic regions: a) Queensland grazing
lands; b) Queensland; and c) Australia.

Table 4.  Maximum correlations (r) between area-averaged observed and simulated (GCM and RCM) rainfall
for the period 1965-2000. The maximum value for each simulation was selected from the 15 possible seasons
specified in text.
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use at NR&M based on the ability to simulate inter-
annual variability of rainfall for Queensland.

The potential skill in simulating year-to-year
variation was also evaluated by considering the
maximum correlation co-efficient that was
obtained for each region-model combination
across 15 possible ‘seasons’, i.e. every 3-month
period plus annual average and NDJFM and
MJJASO averages (Table 4). For the NCEP GCM
and the 75 km RCM, highest correlation values (r
= 0.3 to 0.4) occurred in eastern and northern
Australia, particularly in Queensland. These values
are less than those usually derived from correlation
with lag SOI (r > 0.4), however model evaluation
was done at grid cell level and then area averaged.
In summary the anomaly correlation values
calculated at the model grid cell resolution have
moderate and useful skill. The preliminary analysis
using statistical calibration and downscaling using
Singular Value Decomposition (Fedderson et al.,
1999) applied to rainfall from CSIRO GCM for
Queensland show that the values of anomaly
correlation can be increased by more than 50% in
many cases.

To give some perspective on the skill of anomaly
correlation computed for an area aggregated
rainfall region, rather than for model grid cell size,
we extracted rainfall data for the selected regions
of continental Australia, Queensland Grazing
Lands, western NSW and Gascoyne in WA (see
Fig 1 in White et al., 2003) for the period of 1880
to 2002 from CSIRO GCM and observations. The
anomaly correlation for de-trended time-series for
the April to March annual average are: for
Australia (r=0.57), Queensland Grazing Lands
(r=0.54), western NSW (r=0.43) and Gascoyne
(r=0.34). The values are high and significant, and
show that correlation is higher for Australia as a
whole, than for Queensland Grazing Lands which
are strongly influenced by ENSO. The correlations
support the results of Gong et al. (2003) who found
that skill increased as the size of area aggregated
increased.

2.8 Evaluation of GCM/RCM in terms of
extreme rainfall

The simulated rainfall from the various climate
models was evaluated in terms of forecast of
extremes (e.g. upper and lower terciles) and
percentiles 15 and 85 for Queensland’s grazing
lands (Table 5) and Murray Darling Basin (Table
6). Values greater than 0.5 show skill above
climatology. The evaluation used ROC scores
(Swets 1973; Mason 1982; Harvey et al. 1992;
Mason and Graham, 1999; Mason and Graham,
2002). The model ROC scores were compared to
those obtained for the SOI phase system at 15 km
resolution as a benchmark. Because of the
difference in resolution between the models, and
because ROC scores are vector quantities, the area
averaged ROC scores are not directly comparable.
Nevertheless, the area average values give a feel
for the level of skill for the selected regions. For
the Murray Darling Basin (MDB), the simulation
of extremes in winter/spring rainfall showed
superior skill compared to distribution in tercile
rainfall. For Queensland’s grazing lands there was
little increase in skill at the extreme percentiles in
summer rainfall compared to ROC scores for upper
and lower terciles. The SOI phase system has
generally lower values of ROC scores for upper
and lower terciles compared to the various climate
models. At extreme percentiles, ROC scores for the
RCM 15 km were greater than ROC scores for the
SOI phase system evaluated at the same resolution.

2.9 GCM evaluation of SOI – Inter-decadal
Pacific Oscillation interaction

Previous analyses (Power et al., 1999; McKeon and
Hall, 2002; Crimp and Day, this volume; McKeon
et al., 2003) have found that ENSO and inter-
decadal variability in the Pacific Ocean interact to
change the probability of wet and dry years in
Queensland. One index of inter-decadal variability
is the Inter-decadal Pacific Oscillation (IPO, Power
et al., 1999). Different phases of the IPO resemble,

      

          
           
           

           
           

           
 

Table 5.  Area-averaged ROC scores (1965 to 2000) for Queensland Grazing Lands for the main growing season
(November to March) and dry/winter season (May to October).  Values are computed for lower, middle and upper
tercile and two extremes at the 15th and 85th percentiles.  The ROC score has been calculated at the resolution of
each GCM or RCM (Table 1).  The ROC for SOI phase was calculated at 15km resolution.
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at longer time scales, sea surface temperature
patterns similar to phases of ENSO.

Although the correlations between simulated and
observed rainfall were low, the results indicated
reasonable correlations between simulated SOI and
simulated rainfall. Thus GCMs are suitable to
examine the apparent but controversial interaction
between the IPO and SOI on rainfall (Power et al.,
1999; Chapter 3 in McKeon and Hall, 2002; Crimp
and Day, 2003 in this volume).

The GCM T63 was run from 1880 to 2000 (121
years) forced by observed SSTs with five
ensembles. Rainfall for each year was expressed
as a percentile relative to climatology. Two
approaches to calculating climatology were used:
1) combining all ensembles, i.e. 121 years by 5
ensembles; and 2) a climatology derived for each
ensemble. Years were then categorised into the
following six year-types as described (McKeon and
Hall 2002, McKeon et al., 2003):
1) SOI < -4 and IPO < 0 (i.e. SOI negative and IPO

negative);
2) SOI > +4 and IPO < 0 (i.e. SOI positive and IPO

negative);
3) SOI < -4 and IPO > 0 (i.e. SOI negative and IPO

positive);
4) SOI > +4 and IPO > 0 (i.e. SOI positive and IPO

positive);
5) SOI > -4 and < +4 and IPO < 0 (i.e. SOI neutral

and IPO negative); and
6) SOI > -4 and < +4 and IPO > 0 (i.e. SOI neutral

and IPO positive).

The average percentile for each group was
calculated and for summer rainfall (November-
March), the main effects of the above
categorisation on observed rainfall were that, for
groups with same SOI value, there was greater
rainfall in eastern Australia when the IPO was
negative compared to when IPO was positive. In
Queensland, SOI positive-IPO negative years had
the highest rainfall whilst the SOI negative-IPO
positive group had the lowest rainfall. In WA the

latter group had high rainfall in contrast to the
lower rainfall in eastern Australia.

The IPO negative groups had generally more
rainfall than the IPO positive groups. Thus the GCM
simulations, forced by observed SSTs, confirmed
the observed interaction between the IPO and SOI,
especially in Queensland. The effect of the IPO in
SOI neutral years has been one important
explanation of drought/degradation episodes, e.g.
low summer rainfall in NSW during SOI neutral-
IPO positive years. The GCM simulations had
relatively lower rainfall in these year-types but
not to the same extent as observed. The SOI
neutral-IPO positive year-types often occurred in
long sequences interposed with SOI negative-IPO
positive years, including major regional droughts.
As described above, there are other mechanisms
resulting in lower rainfall not yet fully represented
in GCMs such as the biospheric feedback of
widespread drought. Similarly important SST
regions may not be adequately represented in the
historical SST record.

In conclusion the simulations for summer rainfall
were in general agreement in terms of the large
differences in observed rainfall between SOI-IPO
year types. This result indicates the observed
interaction in mechanistically consistent with
simulated rainfall from a GCM forced with
observed SSTs. However, the less distinct effects
of the IPO on observed winter rainfall or in neutral
SOI years for summer rainfall were not reproduced
in simulated rainfall and will require further
exploration.

2.10 Summary of findings and discussion

The analysis of simulation results for the GCMs
and RCMs forced by observed SSTs showed that:

large-scale features of the atmosphere, i.e. SOI
were very well represented and that the RCMs
did simulate fine resolution features such as
tropical cyclones, rainfall depression and rain
shadow areas

      

         
 

 
           
           

           
           

 

Table 6.  Area-averaged ROC scores (1965 to 2000) for Murray Darling Basin for May to October and November to
March. Values are computed for lower, middle and upper tercile and two extremes at the 15th and 85th percentiles.
The ROC score has been calculated at the resolution of each GCM or RCM (Table 1).  The ROC for SOI phase was
calculated at 15 km resolution.
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spatial variation in long term average rainfall
was well simulated with the newer CSIRO T63
GCM and with RCMs nested within the older
NCEP GCM

modest values of correlations (r <0.4) were
achieved for inter-annual variation in seasonal
and annual rainfall, however statistical
calibration can increase skill in many parts of
Australia

simulated rainfall was highly correlated with
simulated SOI, especially in Queensland, but
these correlations were on average higher than
observed SOI-rainfall correlations

simulations of summer rainfall between SOI-
IPO year types were in general agreement with
observed rainfall, however, the less distinct
effects of the IPO on observed winter rainfall
or in neutral SOI years for summer rainfall were
not reproduced.

The improvement gained in spatial agreement by
using RCMs nested within the NCEP GCM was
encouraging. The NCEP GCM was ‘too wet’ in
Queensland and not surprising the 75 km and 15
km RCMs were also ‘too wet’, although
substantially closer to observed climatology than
the NCEP GCM. The CSIRO T63 GCM was better
than NCEP GCM in terms of climatology. It would
be expected that nesting RCMs within the CSIRO
T63 GCM would further improve their capability.
Thus there are several steps yet to be explored
which could further increase the skill of climate
models in simulating rainfall variability.

3. Operational use of NR&M Seasonal
Climate Prediction System
NR&M used a two-tier approach to dynamical
seasonal prediction (Syktus et al., 2001). Sea
surface temperature (SSTs) forecast by combination
of a fully coupled atmosphere-ocean model and
statistical methods are used as a lower boundary
condition forcing for the NCEP AGCM, when run
in forecast mode. Global SSTs constructed at
International Research Institute (IRI) at monthly
intervals, with lead-time of 7 months are being
used to produce an ensemble of climate predictions
using NCEP AGCM and double-nested RCM. The
observed SSTs are blended with predicted SSTs
during the first three months of forecast with
decreasing contribution with time from the
observed data. After the first three months the SSTs
used are fully predicted. This approach is thought
to be the best utilization of knowledge to attain
the best skill from the models. In addition we have

been using experimentally a global SST prediction
with lead-time of 12 months from the COLA global
coupled model (Schneider et al., 1999).

Using this approach NR&M has been producing
semi-operationally a seasonal forecast since late
1998 at monthly intervals. Each forecast has a 7-
month lead-time and consists of a 10-member
ensemble with the T40 GCM and a 15-member
ensemble with RCM at 75 km, allowing for a
probabilistic approach to risk management of
seasonal conditions. Forecasts with the 15 km RCM
have been produced since beginning of 2000 and
are most expensive computationally. The 15 km
RCM used in this approach has similar resolution
to RCM used by CBoM in operational weather
forecasting, which typically is only a few days
long, but produced daily.

Data from the NCEP AGCM forecasts are extracted
and provided to the IRI pool of models for use in
the production of the IRI Net Assessment Forecast
and also more specialised forecasts by individual
models. These data are publicly available on the
IRI web pages (Barnston et al., 2000; Goddard et
al., 2003). They are used widely internationally,
including by S.E. Asian and Pacific nations. The
probabilistic forecasts provided early warning of
increased chance of drought in eastern Australia
in 2002.

NCEP AGCM and IRI Net Assessment Forecasts
have been assessed in term of their skill recently
(Goddard et al., 2003). Limited work has been done
in-house to date on evaluation of downscaled
forecasts, as accurate assessment of forecast skill
can only be done after accumulating a number of
forecasts, spanning at least one full cycle of ENSO.
However, such an assessment is being carried out
presently as we have over 4 years of forecast data
available now for evaluation.

4. Linking GCM output to simulations
of grazing systems in Queensland
This section describes preliminary studies regarding
the methodology of how the skill of climate
forecasting systems (statistical and GCMs) can be
compared in terms of what is most relevant to
grazing management decisions.

The major decisions that influence the profitability
and sustainability of a pastoral enterprise are
measured by the number animals run (stocking
rate animals per hectare) and the flexibility of
stocking and de-stocking based on seasonal
conditions (Johnston et al., 2000). A range of
stocking rate strategies are available to graziers
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including (a) constant stocking rate, where number
of animals are held approximately constant from
year-to-year; and (b) where animal numbers are
changed in response to pasture feed availability,
especially after the end of the main growing
season, i.e. between April and October. Climate
forecasts have been available since 1988 and
surveys have found that this information is also
used to make stocking rate decisions (Johnston et
al., 2000). One strategy now available to graziers
is to combine both knowledge of current pasture
feed with a forecast of future rainfall to adjust
stock numbers. Thus the most relevant ‘skill test’
for climate forecasting systems is the evaluation
of land from year-to-year decisions linking
forecasts to stocking rate. In this study we have
used a spatial model of the grazing system to make
annual decisions on stock numbers (1st October)
and evaluate different climate forecasting systems
in terms of the impacts on animal production and
risk of resource degradation.

A baseline simulation (using AussieGRASS; see
Carter in this volume) was conducted for each pixel
in which stock numbers were changed each year
on the 1st October to eat a constant percentage
(20%) of standing dry matter (SDM) over the next
12 months. This strategy is often referred to as
‘responsive’ as it allows stock numbers to be
adjusted based on feed availability. In previous
simulation studies (McKeon et al., 2000) this
strategy has proved superior to constant stocking
rate strategies at locations with highly variable
climates (Johnston et al., 2000).

For the forecasting systems the percentage of SDM
was changed each year in proportion to forecasted
pasture growth for the next 12 months (expressed
relative to average growth). Each forecasting
system was expressed as year-types or phases (1
to 5). Forecasted growth was calculated for each
year-type from pasture growth simulated for an
individual pixel in the base-line study. The

calculation was made each year excluding the year
being simulated from the calculation of forecast
growth, i.e. a partial cross validation approach.
‘Perfect knowledge’ year-types were determined
by ranking historical observations and simulations
of pasture growth into five groups. ‘Perfect
knowledge’ systems tested include: (a) perfect
knowledge of annual growth at each pixel; (b)
perfect knowledge of annual rainfall at each pixel;
and (c) perfect knowledge of rainfall aggregated
areas across Queensland’s major pastoral and
cropping zone. A ‘constant stocking rate’ option
was tested by using the stocking rate averaged
from 1965 to 2000 in the base-line study.
Production attributes averaged over the simulation
period were: (a) number of animals grazed; and
(b) liveweight gain per ha. Degradation risk was
calculated as: (a) % time surface cover was less
than 40%; and (b) % of years that annual % pasture
utilisation exceeded 30%.

4.1 Simulation results
Preliminary results of the simulation study were
assessed by comparing the different forecasting
systems with base-line simulation and calculating
for Queensland’s grazing lands the proportion of
pixels where there was an increase or decrease in
simulated variables from the base-line simulation
(Tables 7 and 8). For the constant stocking rate
strategy compared to the base-line simulation there
was a larger area where there was a lower
production (37%) than higher production (14%).
Similarly in terms of increased degradation risk
the % area with higher risk was substantially
greater for the constant stocking rate strategy
emphasising the importance of varying stock
numbers from year-to-year. The perfect knowledge
systems (of pasture growth, rainfall and
Queensland grazing lands rainfall) all showed
substantial increase in the % area with higher
production than baseline simulation. Perfect
knowledge of pixel growth was superior to perfect

   
    

     
     

 
 

    

     
     

     
     

 

Table 7.  Evaluation of cattle production benefits for different forecast systems and classification of historical
year-types based on perfect knowledge.  Evaluation was in terms of number of stock carried and beef
production in terms of kg of liveweight per ha.  The table shows the percentage area of Queensland’s grazing
lands where there was an increase or decrease in stocking rate or production compared to the base line
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knowledge of rainfall or perfect knowledge of
average Queensland grazing land rainfall in terms
of both production benefits and reducing
degradation risk. The ‘perfect knowledge’ systems
indicate that there is considerable potential benefit
for climate forecast systems, which can forecast
at either a large regional level (100Mha), or better
still at an individual pixel resolution.

The climate forecasting systems (GCM/RCM and
operational SOI phase system) both showed
benefits in terms of production and reduced risk
of resource degradation. In terms of production
relative to base-line simulation, the % area where
increases occur was greater than the % area where
decreases were simulated (Table 7). In terms of
degradation risk (Table 8), there were substantial
areas where simulated risk was reduced (37-44%).
The GCM/RCM system was superior to the
operational SOI phase system in terms of both areas
of production benefit and areas of reduced resource
damage.

This preliminary study showed that climate
forecasting systems could be comprehensively
compared using a simple decision rule linking: (a)
the climate forecast; and (b) information on pasture
feed availability. Thus this approach to comparing
‘skill’ was done in a way most relevant to the
intended clients of the forecasting systems. Further
studies will include improved models of
degradation feedbacks, removal of ‘perverse’
climate forecasts, and optimisation of decisions
in relation to climate forecasts. Monte Carlo
simulations are also being carried out to allow the
skill at each pixel to be assessed in probabilistic
terms. The skill testing system described in this
study also will allow assessment of different
attributes of the ensemble simulations from the
GCM/RCM.

5. Summary
The climate system is highly complex and exhibits
non-linear behaviour. Climate forecasts have a
high degree of uncertainty and need to be issued
probabilistically. Seasonal climate forecasts have
several sources of uncertainty such as inherent
chaotic nature of climate system, imperfections in
numerical representation of climate system and
uncertainty in prediction of sea surface
temperatures used to drive the second tier
prediction system. An ensemble simulation
approach has been used to reduce the chaotic
component of the atmosphere and enhance
coherent response to remote forcing. The NR&M
seasonal climate prediction system has been able
to simulate regional rainfall with useful level of
skill, especially for the extremes.

 Comparison of GCM/RCM output expressed in the
same manner as statistical systems indicates equal
or better skill in terms of grazing management
decisions. Further work will evaluate alternative
ways of linking GCM/RCM output to management
decisions in grazing systems.
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Table 8.  Evaluation of pasture resource degradation risk for different forecast systems and classification of
historical year-types based on perfect knowledge.  Evaluation was in terms of percentage of time that
surface cover was less than 40%, and percentage of years pasture utilisation was greater than 30%.  The
table shows the percentage area of Queensland’s grazing lands where there was an increase or decrease in
degradation risk compared to the base line simulation.
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